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Abstract

We use eye-tracking to investigate how participants evaluate compound lotteries. We
use the order of information acquisition to differentiate between the reduction of
compound lotteries axiom of expected utility and the compound independence axiom
compatible with any decision theory. We also test these axioms through a new test that
combines valuation data with methods used to test these axioms with choice data.
Evidence from both eye-tracking and our new test supports the reduction of compound
lotteries axiom. We then use a second task from a different domain to generalise these
strategies and find eye-tracking and behavioural data support the forward induction
approach for problem-solving.
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1 Introduction

When assuming a holistic approach to lotteries evaluation, there are two ways to
reduce and evaluate compound lotteries. One strategy is to start from the end of a
sequence of events and reason backwards to determine the value of a lottery, a process
like backward induction (Segal, 1990). Another strategy is to compute the probabilities
of the final level of outcomes, reduce a compound lottery to a simple one, and then
evaluate it (Von Neumann & Morgenstern, 1944). This process is akin to a forward
induction approach to problem-solving. We aim to compare these two approaches by
using eye-tracking and behavioural data.

Risky situations are often depicted through lotteries. A simple lottery, denoted as , is a𝑆
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forms. However, we consider them monetary payoffs for simplicity and denote the finite
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set of all outcomes as . For convenience, assume . We denote the set𝑋 𝑥
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of simple lotteries by . A compound lottery refers to a lottery that allows the outcomesφ
to be lotteries, represented as where for all and𝐶 = 𝑆
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Under the expected utility (EU) theory, the reduction of compound lotteries (ROCL)
axiom ensures that compound lotteries can be reduced to simple lotteries.

ROCL axiom. Let and .𝑆
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For any compound lottery, we can reduce the lottery to a simple lottery that generates
the same probability distribution of outcomes. Hence, the ROCL axiom ensures that a
compound lottery can be reduced to a simple one, which has been called the actuarially
equivalent lottery (AE). Thus, decisions are made based on the reduced lottery over the
final level of outcomes (Von Neumann & Morgenstern, 1944). For example, consider a
two-stage compound lottery where . Under𝐴
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Compound independence (CI) axiom is an alternative to the ROCL axiom in which
compound lotteries are reduced into simple ones by successive substitution of certainty
equivalents of last-stage lotteries (Segal, 1990).4 It implies that decision-makers first
evaluate the last-stage lotteries of a compound lottery, then reduce and evaluate the
lottery.

CI axiom. Consider the two-stage compound lotteries and𝐴 = 𝑆, 𝑟; 𝑆𝐴, 1 − 𝑟( )
. The preference relation satisfies the CI axiom if for all𝐵 = 𝑆, 𝑟; 𝑆𝐵, 1 − 𝑟( ) ≽

and we have:𝑆, 𝑆𝐴, 𝑆𝐵∈φ 𝑟∈ 0, 1( )

if, and only if, .𝐴≽𝐵 𝑆𝐴≽𝑆𝐵

If subjects follow the CI axiom, they reduce the above-mentioned compound lottery 𝐴
1

as , where stands for the certainty equivalent of lottery .𝐶𝐸 𝐿( ), 𝑟; 𝑥
1
, 1 − 𝑟( ) 𝐶𝐸 𝐿( ) 𝐿

Hence, subjects should first evaluate the lottery and then focus on and the other𝐿 𝑟
outcome to evaluate a reduced simple lottery. Under expected value and EU, these two
axioms have similar predictions. However, the predictions differ for rank-dependent
utility or prospect theory preferences.

4 Certainty equivalent is a certain amount that makes the decision maker indifferent between that amount
and the lottery. These certainty equivalents can be determined by any theory and as such the CI axiom can
be used with non-EU theories as well.

3 In real world, we can have multi-stage lotteries where the outcome of compound lotteries are compound
lotteries as well. However, in our experiments, we only deal with two-stage lotteries.



We aim to provide the first test of the ROCL and CI axioms through eye-tracking data.
For the purpose of this study we use forward induction to mean the ROCL and backward
induction to mean the CI. Eye-tracking is helpful because it is difficult to distinguish
between the two axioms by choice or valuation data alone (Hajimoladarvish, 2018). In a
valuation task, the evaluation occurs in isolation for each lottery, whereas in a choice
task, two options are assessed concurrently. More importantly, if subjects follow the
expected value when reducing compound lotteries, the two axioms and usual tests will
both hold. We also test the validity of these axioms through a novel test that combines
the conventional methods used in the literature with choice data and valuation data.
Furthermore, we examine if results from eye-tracking data and self-reported valuation
of lotteries are consistent. An ideal outcome would be for both data to indicate one
axiom. The ROCL or CI axioms explain the validity of the random lottery incentive
mechanism used in experiments5. The random lottery incentive mechanism is
incentive-compatible only when either of these two axioms holds (Starmer and Sugden,
1991).

We contribute to the evaluation of compound lotteries in three ways

1. We test the consistency prediction of both the ROCL and the CI axioms using
certainty equivalents of compound lotteries.

2. We use eye-tracking for further evidence of the axioms used as strategies in
decision-making.

3. We compare problem-solving strategies in tasks of different natures and
domains.

Eye-tracking data offers valuable insights into various aspects of lottery
decision-making. Firstly, gaze patterns provide information about attention allocation
during decision-making (Harrison and Swarthout, 2019). By analysing fixations on
different attributes of lottery options, researchers can assess the salience of specific
features and their impact on choice behaviour (Frydman & Mormann, 2018; Glaholt et
al., 2009; Wedell & Pettibone, 1996). Moreover, eye-tracking data elucidate information
processing strategies, such as the order in which individuals attend to different
attributes and the duration of fixation on each attribute (Krajbich et al., 2010; Glöckner
et al., 2011). This information shows how individuals integrate information and form
preferences in lottery decision-making contexts. For more basic evidence on
eye-tracking, attention, information processing and reading, see reviews (Rayner, 1998;
Rayner, 2009; Hoffman, 1998).

Decision-making under risk has been explored by eye-tracking with choices over
lotteries (Rosen and Roisenkoetter, 1976; Russo and Dosher, 1983; Arieli et al., 2011;
Glöckner and Herbold, 2011; Fiedler and Glöckner, 2012; Janowski, 2012; Su et al.,
2013; Stewart et al. 2016; Harrison and Swarthout, 2019; Zhang et al., 2024). While all
of these studies used data while subjects were making choices over alternatives, we
used data while they were evaluating lotteries individually. Moreover, our study extends
this growing literature to compound lotteries and focuses on the underlying strategies

5 See appendix for demonstration of this claim.



used in the valuation process. Hence, eye movements offer a method for distinguishing
between different approaches to processing information.

The paper is organised as follows. Section 2 explains the experimental design. Section 3
describes the methods used to test the ROCL and the CI axioms. Section 4 reports the
data and findings. Section 5 explores the correlation between cognitive abilities and
ROCL and CI consistent choices. Section 6 discusses the results, and section 7 concludes.

2 Experimental Design

The experiment consisted of two tasks, and eye-tracking was used for both. The order in
which these two tasks were completed was counterbalanced. Subjects were placed such
that their eyes were approximately 156.5 cm away from the monitor. They were
instructed to stay as still as possible during the task and were not provided external
fixators like a chin rest.

2.1 Task 1

In the first task, we elicited the certainty equivalent of a series of simple and compound
lotteries. Compound lotteries are denoted by and , and simple lotteries are marked𝐴 𝐵
as , .𝑆,   𝑆𝐴,   𝑆𝐵,   𝐴𝐸(𝐴)  𝐴𝐸(𝐵)

To employ eye-tracking technology, we elicited certainty equivalents by directly asking
subjects to evaluate lotteries. This approach ensures that subjects concentrate on the
lottery without shifting their gaze between different amounts, as in multiple price lists,
or consistently fixating on sure amounts, as in the bisection procedure.

To test the ROCL axiom, we need to elicit the certainty equivalent of compound lotteries
and their associated actuarially equivalent lotteries. Participants typed in their values
for each lottery in the text box displayed below the lottery in each trial. They could
delete and retype, and the screen moved to the subsequent trial only when they pressed
the enter key. There was no time constraint, and there were one-second fixation screens
between trials where the participants were instructed to look at the dot on the screen.

To test the CI axiom, we need to elicit certainty equivalents of four lotteries, two
compound lotteries like and , and two distinguishing simple lotteries and . The𝐴 𝐵 𝑆𝐴 𝑆𝐵
battery of compound lotteries is presented in Table 1. The associated actuarily
equivalent lotteries are presented in Table 2. Note that lottery ’s are first-order𝐵
stochastically dominated by lottery ’s (they have lower expected value).𝐴

All lotteries were represented as decision trees. Figure 1 (panels A and B) demonstrates
a compound lottery and how we refer to its different outcomes and probabilities. We
explicitly displayed all lottery information and randomised the order of the lotteries for
each subject. Moreover, we displayed the lotteries such that 1/3 of them appeared on
the left of the screen, 1/3 centred around the middle and 1/3 to the right. We also
counterbalanced outcomes and probabilities across positions. This was critical for
getting unbiased eye-tracking data. This counterbalancing was omitted for the AE(A)
and AE(B), which always followed the rest of the lotteries.



All lotteries were 1530 pixels in width and 966 pixels in height. This is 10.01◦ and 7.01◦

visual angle along the width and height, respectively.

Table 1: Battery of compound lotteries

𝐴 = 𝑆, 𝑟; 𝑆𝐴( ) 𝐵 = 𝑆, 𝑟; 𝑆𝐵( )
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1 0.5 1000 1 2000 0.10 4000 2000 0.5 4000

2 0.5 1000 0.75 2000 1000 0.10 4000 1000 0.5 4000

3 0.9 4000 1 2000 0.5 4000 2000 0.9 4000

4 0.9 1000 0.5 2000 1000 0.5 2000 1000 0.9 4000

5 0.9 2000 1 1000 0.25 4000 1000 0.25 2000

6 0.75 1000 0.9 4000 1000 0.75 2000 1000 0.90 2000

7 0.5 1000 1 2000 0.75 4000 2000 0.90 4000

8 0.25 2000 1 1000 0.5 4000 1000 0.75 4000

9 0.75 4000 1 2000 0.5 4000 2000 0.75 4000

2.2 Task 2

Participants had to solve a pattern completion task in the second task (Figure 1C shows
a Hard trial). In a 3X3 pattern, the ninth tile was missing. They were provided with four
options below, of which they selected one option that fit the missing tile by pressing the
number keys 1, 2, 3, or 4 on the keyboard. There were 18 easy and 18 hard trials. In
Easy, the missing tile was determined by one feature, like colour or shape, and in Hard, it
was determined by a conjunction of two or more features. There was no time constraint
and a 500ms fixation screen between trials. This task is modelled after Raven’s
progressive matrices (Carpernter, 1990; Vigneau & Bors, 2008; Raven and Raven, 2023).

Table 2: Battery of actuarily equivalent lotteries
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2000 0.05 4000 0.45 1000 2000 0.25 4000 0.25 1000

2000 0.125 1000 0.425 4000 2000 0.125 1000 0.625 4000

2000 0.05 4000 0.95 2000 0.01 4000 0.99

2000 0.50 1000 0.50 2000 0.45 4000 0.01 1000

4000 0.075 1000 0.025 2000 1000 0.025 2000 0.975 0

4000 0.075 1000 0.8625 2000 4000 0.075 1000 0.90 2000

1000 0.50 2000 0.375 4000 1000 0.50 2000 0.45 4000

2000 0.25 4000 0.375 1000 2000 0.25 4000 0.1875 1000

4000 0.875 2000 0.125 4000 0.8125 2000 0.1875

In visuo-spatial reasoning tasks or relational reasoning tasks, there are two main
strategies that one can use - constructive matching, which involves mentally
constructing the missing piece of the pattern, or response elimination, where
participants systematically compare the options given with the pattern to find one that
seems to fit (Bethell-Fox et al., 1984; Vigneau & Bors, 2006; Snow, 1980; Gonthier &
Roulin, 2020; Gonthier, C., & Thomassin, N., 2015). These strategies could be thought of
as forward and backward induction strategies, respectively, as defined in the decision
theory literature. Bethell-Fox et al.'s (1984) study used fixation counts and fixation
sequence orders to show that subjects used these two strategies, with
constructive/forward induction strategy correlated with higher intelligence and
response elimination/backward strategy correlated with lower intelligence. One subject
does not need to follow the same strategy throughout, as evidenced by Gonthier and
Roulin (2019), who show that subjects tend to use more response elimination in hard
trials. They suggest constructive/forward induction is effective but costly for hard trials.

In the reasoning task, the pattern was 384 pixels along width and height, and each
option was 128 pixels along width and height. This is 2.51◦ and 0.84◦ visual angle along
the width and height for pattern and options, respectively. The tasks were written and
presented using Psychtoolbox-3 (Brainard, 1997) and MATLAB (The MathWorks).



Figure 1: Task paradigm. A. Decision tree of a compound-2x lottery shown with the
nomenclature followed for each probability and outcome. These are consistent across
lotteries. B. An example of compound-up lottery. The segment at the bottom of the screen
illustrates the area where subjects entered the value of the lottery. C. An example of a hard
trial of the reasoning task. The boxes in B and C indicate the area of analysis for
eye-tracking and not displayed during the task.



3 Methods used to test the ROCL and CI axioms

Two methods have directly tested the ROCL axiom of the EU. The first method uses
binary choices to examine the hypothesis of equal responses between compound
lotteries and their associated AE lotteries. However, this is not a precise test of the
axiom. Under the EU, when there is no switching cost, any choice between a compound
lottery and its AE lottery is consistent due to having identical values. Starting with
Bernasconi (1994), researchers have explored the consistency of preferences for a
compound lottery over a simple lottery and the associated AE lottery over the same
simple lottery in pairwise choices. The logic is grounded in maintaining consistent
preferences between a compound and a simple lottery when the compound lottery is
replaced with its AE lottery. This procedure has been followed up by a consistency test
in Harrison et al. (2015). They test for across-task consistency in pairwise choices
between a compound and a simple lottery and another pair with the associated𝐶 − 𝑆( )
AE lottery of the compound lottery and the same simple lottery . For𝐴𝐸(𝐶) − 𝑆( )
example, if a subject prefers to , they should also prefer to . Empirical studies𝐶 𝑆 𝐴𝐸(𝐶) 𝑆
using this method find support for the ROCL (Harrison et al., 2015; Hajimoladarvish,
2018).

The second method compares the elicited certainty equivalents (CE) of compound
lotteries and their AEs. The ROCL axiom is violated if there is a significant difference
between the elicited certainty equivalents. Empirical studies using this method do not
find support for the ROCL. See, for example, Bar-Hillel (1973), Bernasconi and Loomes
(1992), Miao and Zhong (2012), Abdellaoui et al. (2015), Bernasconi and Bernhofer
(2020), and Hajimoladarvish (2018).

The extensive literature on the preference reversal phenomenon, as documented by
Lichtenstein and Slovic (2006), shows that the conclusions from these two tests are
different. While the former test relies on choice data, the latter relies on the valuation of
certainty equivalents. In general, evidence shows that choice data are more consistent
(see, for example, Schmidt and Trautmann (2014) and Harbaugh et al. (2010)).

The methodology to test the CI axiom is based on similar methods. Hajimoladarvish
(2018) tested if the preference ordering of two compound lotteries, such as over ,𝐴 𝐵
follows the same preference ordering as the distinguishing simple lotteries over .𝑆𝐴 𝑆𝐵
When both axioms are tested directly through the same methods, Hajimoladarvish
(2018) cannot distinguish between them as they are both supported with choice data
and violated through the valuation task. In the latter, certainty equivalents of simple
lotteries were used to estimate parameters of utility and probability weighting
functions, which were then applied to calculate certainty equivalents of compound
lotteries according to both axioms. Using choice data, Bernasconi (1994) finds that
while 57% of choices are consistent with the CI axiom, 43% are consistent with the
ROCL axiom.

In this paper, to distinguish between the two axioms, we test the consistency of
preference orderings through elicited certainty equivalents. Compared to the
consistency test through choice data, this test is cognitively more demanding. This new
test is instrumental for our design. Essentially, we apply the consistency test to the
lotteries' valuation and not preference ordering. This presumes that if we do have



well-defined preferences, the preference of over translates into having higher𝐴 𝐵 𝐴
value than , and vice versa. Table 3 summarises our new method for testing the CI and𝐵
ROCL axioms and compares it to the consistency test used with choice data.

Table 3: Methods to test the CI and ROCL axioms

Axiom Consistency test with choice task Consistency test with valuation task

ROCL 𝐼𝑓 𝐴≽𝑆𝐴⟺ 𝐴𝐸(𝐴)≽𝑆𝐴 CE(𝐼𝑓 𝐶𝐸(𝐴)≽𝐶𝐸(𝑆𝐴)⟺ 𝐴𝐸(𝐴))≽𝐶𝐸(𝑆𝐴)

CI SA𝐼𝑓 𝐴≽𝐵⟺ ≽𝑆𝐵 CE(𝐼𝑓 𝐶𝐸(𝐴)≽𝐶𝐸(𝐵)⟺ 𝑆𝐴)≽𝐶𝐸(𝑆𝐵)

Note: denotes certainty equivalent. These preference relations hold for the opposite pattern as well.𝐶𝐸
For example, choices are consistent if as well.𝑆𝐴≽𝐴⇒ 𝑆𝐴≽𝐴𝐸(𝐴) 

3.1 Eye-tracking

The diameter and position of the participant’s left and right pupils were continuously
measured using a Tobi pro fusion eye tracker with a sampling rate of 120 Hz. A 5-point
spatial calibration was performed before the task began. The raw data was averaged
across the two pupils. Further, fixation and saccade time points were separated using a
velocity threshold of 30 deg per sec (Nyström & Holmqvist, 2010; SR Research, 2007).
All points below the threshold velocity were considered as fixation. In order to clean the
data, only 50ms fixation (Rayner, 1998) or higher was used. Raw data and fixation data
without cleaning were also analysed for robustness checks.

For each trial, we extracted the fixation points around the number in the lottery task (70
pixels in all directions) and in each tile in the reasoning task (an additional 8 pixels were
added to the width and height only for the option tiles). The mean of the fixation points
(lesser value indicates earlier in order) divided by the trial reaction time for each
number/tile was used to determine the order. For example, to compare whether the
upper original probability was looked at before the upper-arm-1 probability in the
compound-up lotteries, we calculated the mean fixation points per trial in the two
probability windows and averaged across the six compound-up trials for each subject.
We then did a paired t-test to determine which probability was accessed first across
subjects. This mean of fixation points allows for glancing at all numbers/tiles before
processing them, as a lower mean would suggest the number was processed first rather
than just fixated on first. To examine the pattern in individual subjects, we used the
same mean fixation points averaged across trials but compared whether the mean of the
upper original probability was lower than the upper-arm-1 probability without a t-test.
This analysis is based on numerical differences to understand the consistency of the
aggregate subject analysis. The same would hold for comparing if a particular pattern
tile was looked at before an option tile.

Lastly, we calculate the number of times the fixation moved between windows. For a
given window, we calculate the times there was a jump from that window to all other
windows in each trial. For this analysis, we calculate the Euclidean distance from every
fixation that does not fall into a window to the centre of all windows. The point is then



assigned to the window with the lowest distance to have an unbroken sequence of
movements in a trial.

We also computed the number of trials where no eye-tracking data was collected for
each participant. There were only two subjects in the lottery task and four in the
reasoning task, with no data in a few trials.

4 Data and Results

Seventy-three participants (32 female, 44%) between 18.64 and 24.98 years (M = 20.44
years) participated. Data collection took place between September 13 and 19, 2023. The
sessions were conducted in the psychology lab one by one. Recruitment of participants
occurred through the SONA system. All participants are undergraduates from Ashoka
University, except three PhD students. A sample size of 70 was determined before data
collection, as typical for eye-tracking studies. All participants were right-handed with
normal or corrected-to-normal vision and had no neurological or psychiatric illness
history. Participants with glasses were avoided to avoid interference with pupil
measurement, but participants with contact lenses were allowed. The study was
conducted with approval by the Ashoka Research Ethics Committee. All participants
gave written informed consent. On average, each session took about 26 minutes,
excluding the instruction. Subjects were paid a flat participation fee of 400 rupees,
approximating $4.82.

4.1 Test of the ROCL axiom

We use the Cochran Q test coupled with the Bonferroni-Dunn (B-D) correction
procedure to test the consistency prediction of the ROCL axiom. We test the hypothesis
that subjects evaluate lottery higher than lottery in the same proportion as the𝐴 𝑆𝐴
actuarily equivalent simple lottery over lotteries. Hence, we are testing if the𝐴𝐸(𝐴) 𝑆𝐴
proportion of subjects indicating higher certainty equivalents for lottery s as compared𝐴
to lottery s is the same as the proportion of subjects having higher certainty𝑆𝐴
equivalent for lotteries as compared to lotteries.𝐴𝐸(𝐴) 𝑆𝐴

We do not find evidence to reject the ROCL axiom consistency prediction. Table 4 shows
the results of the B-D method for each of the 9 comparisons. Table 4 provides evidence
that with a 5% familywise error rate, subjects evaluated the A lotteries higher than 𝑆𝐴𝑠
in the same proportion as the simple lotteries over This implies that our𝐴𝐸(𝐴) 𝑆𝐴𝑠.
data support the ROCL consistency prediction.

We could test the same hypothesis with B lotteries and test if subjects evaluate lottery 𝐵
higher than lottery in the same proportion as the actuarily equivalent simple lottery𝑆𝐵

over lotteries or pool both sets and test across 18 pairs. We get similar results𝐴𝐸(𝐵) 𝑆𝐵
with the pooled data as there is no evidence of inconsistent choices. There is only one
exception with lottery Bs; for the second pair, we observe a significant difference in π

1
and . These results are reported in the Appendix. With the pooled data, 73% ofπ

2
choices are consistent with the ROCL. Almost all subjects (71/73) made more than 50%
(> 9/18) ROCL consistent choices. Furthermore, no order effect (t71 = -0.281, p > 0.779)



or gender effect (t62 = 0.086, p > 0.931) was observed in the number of choices
consistent with the ROCL.

Table 4: The B-D procedure on linked certainty equivalents of A-SA lottery pairs and AE(A)-SA lottery
pairs

Pairs Proportion indicating
higher CE for A as

compared to SA ( )π
1

Proportion indicating
higher CE for as𝐴𝐸(𝐴)

compared to ( ) 𝑆𝐴 π
2

|π
1

− π
2
|

1 0.22 0.16 0.05
2 0.26 0.32 0.05
3 0.93 0.96 0.03
4 0.79 0.88 0.08
5 0.32 0.27 0.04
6 0.92 0.85 0.07
7 0.44 0.22 0.22
8 0.62 0.58 0.04
9 0.84 0.90 0.07

Note: The test rejects the null hypothesis of if > d. Calculating the critical value dπ
1

= π
2

|π
1

− π
2
|

requires first defining ex-ante a familywise Type I error rate ( ). For the correspondingα
𝑓𝑤

α
𝑓𝑤

= 0. 05
critical value is 0.24. Lottery A has a higher expected value than SA in pairs 3, 6 and 9 and equal expected
values in pairs 4.

4.2 Test of the CI axiom

We use the Cochran Q test coupled with the Bonferroni-Dunn (B-D) correction
procedure to test the consistency prediction of the CI axiom. We test the hypothesis that
subjects evaluate lottery higher than lottery in the same proportion as the𝐴 𝐵
distinguishing simple lotteries over lotteries. Hence, we are testing if the𝑆𝐴 𝑆𝐵
proportion of subjects indicating higher certainty equivalents for lottery s as compared𝐴
to lottery s is the same as the proportion of subjects indicating higher certainty𝐵
equivalents for lotteries as compared to lotteries.𝑆𝐴 𝑆𝐵

We do not find evidence to reject the CI axiom consistency prediction. Table 5 shows the
results of the B-D method for each of the 9 comparisons. Table 5 provides evidence that
with a 5% familywise error rate, subjects evaluated the A lotteries higher than Bs in the
same proportion as they evaluated the simple lotteries higher than This implies𝑆𝐴 𝑆𝐵𝑠.
that our data support the CI consistency prediction. 74% of choices are consistent with
CI axiom. Most subjects (64/73) made more than 50% (> 4/9) CI consistent choices.
Additionally, we found no evidence of an order effect (t70 = -0.783, p > 0.435) or gender
effect (t69 = 0.089, p > 0.929) influencing the frequency of choices consistent with the CI.



Table 5: The B-D procedure on linked certainty equivalents of A-B lottery pairs and SA-SB lottery pairs

Pairs Proportion indicating
higher CE for A as

compared to B ( )π
1

Proportion indicating
higher CE for as𝑆𝐴
compared to ( )𝑆𝐵 π

2

|π
1

− π
2
|

1 0.77 0.89 0.12
2 0.77 0.92 0.15
3 0.81 0.89 0.08
4 0.56 0.62 0.05
5 0.97 0.93 0.04
6 0.74 0.90 0.16
7 0.77 0.76 0.00
8 0.90 0.86 0.04
9 0.82 0.90 0.08

Note: The test rejects the null hypothesis of if > d. Calculating the critical value dπ
1

= π
2

|π
1

− π
2
|

requires first defining ex-ante a familywise Type I error rate ( ). For the correspondingα
𝑓𝑤

α
𝑓𝑤

= 0. 05
critical value is 0.27.

Is there a bias towards compound lotteries?

We test if the elicited certainty equivalent of compound lotteries and their associated
actuarially equivalent lotteries are equal on average. We have 18 pairs for this
comparison. The paired t-test result indicates a significant difference between the mean
of elicited certainty equivalents (t1313 = 3.8084, p < 0.001). Wilcox signed rank test also
rejected the null hypothesis that the median of pairwise differences in elicited certainty
equivalents is zero ( . Comparable results were obtained when averaging𝑝 <  0. 001)
across 18 choices for each subject and conducting a paired t-test (t72 = 3.1735, p <
0.003). On average, subjects evaluated compound lotteries slightly higher than their
associated actuarily equivalent simple lotteries. The mean of elicited certainty
equivalents for compound lotteries is 2457, while the mean of actuarially equivalent
lotteries is 2318. This is consistent with the findings of Hajimoladarvish (2018),
Harrison et al. (2015) and Bar-Hillel (1973). Moreover, 38% of the pairs show equal
certainty equivalents for compound lotteries and actuarially equivalent lotteries. While
35% show higher values for compound lotteries than actuarially equivalent lotteries,
27% show lower values for compound lotteries.

Kaivanto and Kroll (2012) find that the certainty equivalent of the compound lotteries is
statistically significantly smaller than the objectively equivalent reduced form (AE) in St.
Petersburg gambles. Bansal and Rosokha (2018) find that subjects' perceived value of
projects is higher when projects are described in the reduced version (AE) as compared
to the compound version. Hence, their data suggest a bias towards simple reduced form.

These mixed results can be due to heterogeneity among subjects. Inspecting individual
data, we find that only for 13 subjects, there is a significant difference between the
certainty equivalent of compound lotteries and their associated actuarially equivalent
lotteries. Only 5 subjects show a bias towards compound lotteries, while 3 subjects



indicate a bias towards actuarily equivalent lotteries.6 Hence, the finding of bias towards
the compound or reduced lottery is a confound associated with reporting average
results.

4.3 Eye-tracking data

4.3.1 Lotteries

The eye-tracker records gaze location, time spent on each location and the order in
which subjects look at them. We consider the order of average fixation across all
probabilities and outcomes to be the order of information acquisition. This is consistent
with using all lottery characteristics for valuation supported by Rosen and
Roisenkoetter (1976), Glöckner and Herbold (2011), and Fiedler and Glöckner (2012).
We could use fixation counts or durations as the atoms of analysis. However, our choice
is dictated by the axioms that we are testing.

Figure 2 A illustrates a single trial of a compound lottery task. Here, we see that the
fixation points are concentrated around numbers, with a few in the region below (the
keyboard) where they enter the value. We see that each number is fixated upon multiple
times. The colour scheme (the redder the colour, later in the order) suggests the original
probabilities were looked at before the outcomes. As expected, the last fixations are
related to entering the answer. For analysis, the fixation points from areas around each
outcome and probability (see Figure 1 B) are averaged to determine the order in which
these numbers are processed.

All compound lotteries used in this study are two-outcome two-stage lotteries where
either one or both outcomes of the first-stage is a simple two-outcome lottery. Panel B of
Figure 1 shows a case where the upper first-stage outcome is a lottery. We call these
types Compound-up. Compound-low denotes compound lotteries where the lower
first-stage outcome is a lottery. Compound-2x denotes lotteries where both upper and
lower first-stage outcomes are lotteries.

Note that by design, our compound A (AE(A)) lotteries have a higher expected value
than compound lottery Bs (AE(B)). This holds for SA and SB lotteries as well. We use the
percentage of declared certainty equivalents that follow the dominance ordering as a
measure of accuracy. Overall, the average accuracy was 81.33% (across 27 pairs).

The overall average reaction time was 14.26 seconds. There was a significant difference
between simple lotteries (11.42) and compound (19.93) lotteries (t72 = 10.46, p < 0.001),
with faster simple lotteries.

We calculated the deviation from the expected value averaged across trials for every
subject. A t-test across subjects showed this deviation was not different from zero
(t72=1.44, p <0.15). This suggests that our subjects are using expected value as a guide to
evaluate lotteries. Using the certainty equivalents of two-outcome lotteries, we used
maximum likelihood to estimate expected utility and rank dependent utility parameters
for each individual (see Hajimoladarvish(2018) for details). We then conducted

6 A bias towards compound lotteries is established if subjects evaluated compound lotteries higher than
the actuarily equivalents ones in more than 9 occasions out of 18.



log-likelihood ratio tests to determine the better fit. Interestingly, all of our subjects are
classified as expected utility maximisers.

Figure 2: Fixation areas in both tasks. A. This panel shows the average fixation points of a
subject in one trial of the compound lottery task. B. This panel shows the average fixation
points of a subject in one hard trial of the reasoning task. The size of the points indicates
the time spent. The error bars show the mean and standard deviation of movement during
each fixation event. The colour scheme indicates the order of fixation, with blue being the
first and red being the last. The trials shown here are the same as those in Figure 1.

We first test for regularities in different types of compound lotteries. We find that
subjects start from the left of the screen and then move forward, a pattern consistent
with the ROCL. This is established by examining the order of fixations of the
probabilities and outcomes in the second-stage lottery and comparing them with their
corresponding first-stage probability using paired t-tests across all subjects.



In compound-up type lotteries, we find the following regularities:

1- Upper original probability is viewed earlier than upper-arm-1 and arm-2
probabilities and outcomes (t72 > 2.7, p < 0.001, Bonferroni corrected for four
comparisons pcorrected < 0.03).

2- In the second-stage lottery, the order of fixations shows no preference between
upper-arm-1 probability [p > 0.1] and upper-arm-2 probability followed by the
upper-arm-1 outcome and then upper-arm-2 outcome (t72 > 3.31, p < 0.001,
Bonferroni corrected for six comparisons pcorrected < 0.01).

If subjects followed the CI axiom, they should have viewed the upper original probability
after the second-stage components. Johnson et al. (2002) used mouse-tracking to study
backward and forward induction, which aligns perfectly with the CI axiom as a
backward induction method and the ROCL as a forward induction one. They find
evidence for forward induction, which is consistent with our findings.

The pattern of fixations in compound-low type lotteries is also consistent with the
ROCL. Most importantly, lower original probability is viewed before second-stage
components. We also find the following regularities:

1- Lower original probability is viewed earlier than lower-arm-1 and arm-2
outcomes and lower-arm-2 probability (t72 > 3.38, p < 0.001, Bonferroni
corrected for four comparisons pcorrected < 0.001) but not earlier than lower-arm-1
probability.

2- In the second-stage lottery, the order of fixations is lower-arm-1 probability,
lower-arm-1 outcome, lower-arm-2 probability and lower-arm-2 outcome (t72 >
3.88, p < 0.001, Bonferroni corrected for six comparisons pcorrected < 0.001).

The pattern of fixations in compound-2x type lotteries is also consistent with the ROCL.
Thus, the pattern does not change as the uncertainty increases. By increase in
uncertainty, we mean when both outcomes of a simple lottery are lotteries instead of
just one. Upper original probability is viewed before upper-arm-1, and arm-2
probabilities and outcomes, and lower original probability is viewed before
lower-arm-1 and arm-2 probabilities and outcomes, with all p-values from paired t-tests
across all subjects being less than 0.01. More specifically, we find the following:

1- The upper lottery follows the same pattern as the complex-up lottery.

2- The lower lottery follows a similar pattern to the complex-low lottery with minor
differences that don’t affect the inference of which axioms they follow.7

Similar patterns are observed in individual choices. For compound-up lotteries with 7
fixations, there are 5040 possible orders. Among these possibilities, there are 68 unique

7 Lower original probability was viewed earlier than lower-arm-1 probability. There was no preference
between lower-arm-1 outcome and lower-arm-2 probability.



orders. The most stringent test is to examine if the upper original probability is seen
before all the characteristics of the second-stage lottery. That is if the upper original
probability is viewed earlier than the outcomes and probabilities of the upper-arm-1
and upper-arm-2. 42 subjects (57.53%) in our sample passed this stringent test.
Another way of testing, if subjects have followed the ROCL axiom, is to focus only on
outcomes of the second-stage and examine if the upper original probability is viewed
before outcomes of upper-arm-1 and upper-arm-2. In our sample, 58 subjects (79.45%)
follow this pattern. Finally, we can focus only on either of the arm's outcomes and
examine if they are viewed later than the upper original probability. This is because the
necessary condition for the CI axiom requires subjects to view both second-stage
outcomes before the original probability. If this condition is not met, it is sufficient
evidence for the ROCL axiom. 66 subjects (90.41%) viewed the upper original
probability before either of the second-stage outcomes. This leaves us with 7 (9.59%)
subjects who viewed the upper original probability after both second-stage outcomes
and probabilities, suggesting they followed the CI axiom.

We observe a similar pattern for compound-low lotteries, with 67 subjects (91.78%)
viewing lower original probability before either of the second-stage outcomes. This
leaves us with 6 (8.22%) subjects that viewed the lower original probability after both
second-stage outcomes.

For compound-2x lotteries with 10 numbers to process, there are 3628800 possibilities.
Again, we examine if the corresponding original probability is viewed before either of
the second-stage outcomes. 66 subjects (90.41%) follow this pattern in the upper
lottery. Similarly, we find that for 65 subjects (89.04%), the lower original probability is
viewed before either of the lower second-stage outcomes. Thus, 7 (9.59%) and
8(10.96%) subjects see the original probability after the second-stage outcomes. Hence,
irrespective of the type of compound lotteries considered herein, we find evidence
suggestive of the ROCL axiom through averages across subjects and strategies used by
individual subjects.

Lastly, we investigated the sequence of movements or jumps between the numbers in a
trial to ascertain the strategy used by individual subjects. Here, if, in any trial, a given
subject looked at the second-stage probabilities and outcomes in one sequence (in any
order) before any fixation on the corresponding original probability; it was taken as
evidence that the subject may have employed the CI axiom. We see that 21 subjects
(28.77%) showed evidence of CI axiom in at least one trial in the compound-up trials. 25
subjects (34.25%) showed evidence of CI axiom in the compound-low trials. For
compound-2x trials, 14 subjects (19.18%) showed evidence of the CI axiom in the upper
second-stage lottery, and no subjects showed evidence of the CI axiom in the lower
second-stage lottery. There are 12 subjects common between the compound-up and
compound-low trials and 4 subjects common between all three compound-up,
compound-low and compound-2x upper lottery.



Position differences

Looking at the subset of lotteries displayed in the left position, we again find evidence
for the ROCL axiom. Interestingly, we find that the lower original probability is not
different from the lower-arm-1 probability and outcome in the fixation order in both
compound-low and compound-2x. The compound-up lottery remains the same. We
observe a similar pattern in the middle and right positions as when using all the
positions.

Simple lotteries

Here, we analyse the simplest lotteries with two outcomes and two probabilities8. Our
general intuitive finding provides the sanity check for the order of screen viewing, which
goes from top to bottom, and probabilities are viewed earlier than outcomes. We find
that subjects follow a “Z” shaped movement as the order of fixations is upper
probability, upper outcome, lower probability and lower outcome in two-outcome
simple lotteries (t72 > 4.06, p < 0.001, Bonferroni corrected for six comparisons pcorrected <
0.001). Furthermore, the upper arm (mean of upper probability and outcome) was
viewed earlier than the lower arm (t72 =13.49, p < 0.001), and the mean of the outcomes
was viewed later than the mean of the probabilities (t72 = 10.94, p < 0.001).

The same pattern is observed in individual choices as 35 (47.95%) subjects follow the
same “Z” shape order. There are 9 other unique orders among 24 possibilities of
fixations in our data, with 22 subjects (30.14%) following the order of upper probability,
lower probability, upper outcome, and lower outcome.

4.3.2 Reasoning task

Overall, the average accuracy was 83.7%. There was a significant difference between
easy (91.48%) and hard (76.03%) trials (t72=8.61, p <0.001), with easy trials being more
accurate. The overall average reaction time was 18.13 seconds. There was a significant
difference between easy (10.16) and hard (26.10) trials (t72=16.65, p <0.001), with easy
trials being faster. This is expected in all hard versus easy comparisons across various
different tasks and modalities (Fedorenko et al., 2013; Shashidhara et al., 2019; Vigneau
& Bors, 2006).

To test the use of backward and forward induction strategies in the reasoning task, we
examined whether subjects first looked at the option tiles before viewing the pattern
tiles. In the case of both easy and hard trials, on average, the pattern tiles were viewed
before the option tiles (t72>25.32, p <0.001, Bonferroni corrected for two comparisons
pcorrected < 0.001). We further separated the option tiles as the target and distractors,
separating the trials when a given option was the answer versus when it was not. We see
that the pattern was viewed earlier than the average target and average distractors
(t72>20.39, p <0.001, Bonferroni corrected for two comparisons pcorrected < 0.001).

To further look at individual strategies, we calculated the number of subjects that saw
option tiles before pattern tiles. In the easy trials, 30 subjects (53.42%) saw no options
before seeing all of the pattern tiles, including the spot where the missing tile would go.

8 A few actuarily equivalent lotteries have three outcomes which were not analyzed further.



Note, given the easy nature of the trials, subjects need not see each of the pattern tiles to
figure out the answer. Considering the number of subjects that did not see any of the
options before the first row and the first column, sufficient condition to solve the
problem, we find between 72 subjects (93.63%) and 62 subjects (84.93%) do not see
any options before these critical tiles. Similarly, 48 subjects (65.75%) saw all the pattern
tiles, including the missing tile, before seeing the options for the hard trials. Looking at
the first row and column, between 70 subjects (95.89%) and 64 subjects (87.67%) do
not see any options before these critical tiles.

The proportion of the trial time that elapsed before any option was fixated on (time
spent purely on the pattern) was 0.71 (0.09) for easy trials and 0.72 (0.09) for hard
trials; with no difference between the two. The average proportion of time spent on the
pattern is 0.85 (0.05) for easy trials and 0.84 (0.06) for hard trials; with no significant
difference between them. The proportion of time spent on option is 1 - the proportion of
time spent on the pattern. The proportion of trial time spent on the pattern before the
first toggle to the options and the average proportion of time spent on the pattern
indicates the forward induction strategy (Vigneou & Bors 2006). While they did see a
correlation between both measures and difficulty, we did not. This could be because of
the binary classification of difficulty rather than item-wise classification for each trial.

Lastly, we look at the number of switches or jumps between the pattern and option tiles.
Many alternations point towards response elimination/backward induction strategy,
and fewer suggest constructive matching/forward-induction strategy (Bethell-Fox et al.,
1984; Vigneou & Bors, 2006). In the easy trial, the median number of switches equals
3.39. That is, subjects, on average, look at the option, go back to the pattern, and come
back to the option and so on three times in a given easy trial. As expected, this number is
higher in the hard trials, with a median number of switches equal to 7.28 (t72 = 14.77, p
< 0.001), given the longer trial time. The correlation of switches in easy and hard trials
across subjects is 0.68 (p <0.001). When divided by the trial time, we do not see a
significant increase in jumps. Once again, we fail to see differences in strategy with
difficulty. While the other studies measured strategy variation with IQ and difficulty and
ensured a wide range of IQ among participants (Vigneou & Bors 2006); we could not get
an independent measure of IQ due to an already taxing session. Given that our subject
pool consisted of Ashoka University students, one of the top universities in India, we
may have an average IQ higher than that of a typical sample.

5 Cognitive abilities and the ROCL and CI axioms

As with any other axiom of choice, there is some suggestive evidence indicating that
violations of the ROCL are due to cognitive limitations (Bernasconi and Bernhofer, 2019;
Nebout and Dubois, 2014; Harrison et al., 2015; Prokosheva,2016). Hence, we test if
people with higher reasoning abilities violate ROCL less than those with lower
reasoning scores. We test if the consistent choices of individuals with high reasoning
scores (above median) are higher than those with low reasoning scores (below median).

A significant correlation exists between the number of ROCL consistent choices and
reasoning scores for easy questions (r = 0.21, p = 0.036) and not CI consistent choices.
On average, while individuals with above-median scores in easy reasoning trials have
made 74% ROCL consistent choices, subjects with below-median scores have made 71%



ROCL consistent choices. A chi-square test shows no significant difference between the
distribution of ROCL consistent choices between groups with high and low reasoning
scores (p = 0.594).

Interestingly, we find a significant correlation between the number of CI consistent
choices and reasoning scores for hard trials (r=0.19, p-value=0.049) and not for ROCL
consistent choices. On average, while individuals with above-median scores in hard
trials have made 78% CI consistent choices, subjects with below-median scores have
made 69% CI consistent choices. Hence, we do observe an increase in the number of the
CI consistent choices as performance in the hard trials of the reasoning task increases.
The chi-square test shows a significant difference between the distribution of CI
consistent choices between groups with high and low reasoning scores (p-value =
0.064).

6 Discussion

Our study looks into the evaluation of compound lotteries, utilising eye-tracking to
observe the sequence of gaze patterns when assessing these lotteries. Examining the
order of fixations, we test the ROCL and the CI axioms. If subjects use the CI axiom to
reduce compound lotteries, they should first evaluate last-stage lotteries. We do not
observe this pattern. We find evidence supporting the ROCL axiom through data
averaged across subjects. Looking at strategies used by each individual and even each
trial, we find evidence of subjects using the CI axiom, but it is limited. The finding holds
for all types of compound lotteries considered herein. Similar to the use of backward
induction in sequential games with perfect information, we expected to see more
support for the CI axiom in more complex compound lotteries where both outcomes of
the first-stage were lotteries instead of one.

Our test, which integrates methods used with choice and valuation data, further
supports the ROCL and the CI axioms. When combined with eye-tracking we show more
evidence for ROCL than the CI axiom.

In a second task completed by the same subjects, we examined the strategies used in a
general problem-solving context, here a pattern completion task. On average, we find
that participants examined the pattern and only then looked at the options to select
their answers. This suggests that participants computed and answered templates based
on the pattern that would fit the missing tile and then looked for that template among
the options. This forward induction strategy, i.e. computing the answer before finding it
in the options, resonates with the ROCL axiom. On the other hand, if participants tried to
fit one of the options in the missing tile without first examining the problem thoroughly,
we would conclude with the use of a backward induction strategy.

For robustness checks, we redid the analysis for both tasks with raw data and fixation
data without cleaning and found similar results. Therefore, our results are not a product
of the cleaning process.

Our lottery task findings are based on hypothetical choices that raise certain concerns
regarding the validity of the results. This is because we are not interested in the value of
lotteries to estimate preferences; rather, we wanted to use eye movements to
differentiate between strategies employed in lottery valuation. Moreover, the validity of



the most common method of incentives employed in experiments, the random lottery
incentive mechanism itself, relies on either of the two axioms we are investigating. We
could have paid subjects for each choice and used small stakes, a choice prone to income
effects (Schläpfer et al., 2006). Thus, we opted for larger stakes. Further, as we wanted to
avoid strategic responses that are more common in valuation tasks than choice tasks, we
didn't use real incentives. The valuation nature of the experiment with an
incentive-based procedure would have complicated the interpretation of the results and
we chose the simpler version with the caveat of non-generalizability. We assume
subjects have no special reason to disguise their true preferences.

Our findings could have been confounded by the decision tree representation of
lotteries that promotes the multiplication of probabilities for reducing compound
lotteries. This is because the probabilities are always to the left of outcomes in our
lotteries, and subjects viewing the screen from left to right is a strong finding that
suggests the ROCL axiom might have been used more because of the lottery
representation. For example, the findings of Zhang et al. (2024) show that participants
more frequently choose the lottery with higher expected monetary value in difficult
choices when the payoff information is presented horizontally but not vertically. We
randomly displayed lotteries in one of the three positions to mitigate the issue of
outcomes being to the right. In the left position, the outcomes were displayed near the
centre of the screen, and therefore, they were more easily fixated on before the
probabilities. However, in this subset as well we observe the same pattern of forward
induction. Furthermore, the findings of Segovia et al. (2022) show that elicited
parameters for risk preferences do not vary with presentation formats. Future
eye-tracking studies should investigate using the ROCL compared to the CI strategy in
different formats.

To investigate problem-solving strategies more generally, we opted for a task from a
completely different domain that used patterns instead of numbers. This helps us
mitigate the issue of lottery representation and the tendency to process numbers from
left to right. Further, we have two levels of difficulty in both tasks. We can consider
simple lotteries as easy conditions and compound lotteries as hard conditions. In the
reasoning task, we also have easy and hard problems. These are validated by both
greater reaction times and lower accuracies in the hard versus the easy conditions in
both tasks. While these tasks are not directly comparable, we can compare the intuition
behind problem-solving strategies. We find evidence for forward induction in both tasks.

7 Conclusion

In conclusion, our study provides insights into the mechanisms used when evaluating
compound lotteries through the utilisation of eye-tracking technology. Our investigation
into gaze patterns during lottery evaluation answers an open question in the literature
that aims to distinguish between the ROCL and CI axiom through a given test.

Our findings do not align with a backward sequential evaluation pattern, i.e., the CI
axiom. Instead, we find compelling evidence supporting the ROCL axiom, indicating a
forward induction evaluation strategy. This pattern holds true across various types of
compound lotteries and also in a reasoning task considered in our study. Thus, our



subjects seem to use forward induction strategies in complex and uncertain situations
used herein.
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Appendix

Random lottery incentive mechanism

Experiments employing the random lottery incentive mechanism inform subjects at the
beginning that one of the tasks will be picked randomly, and their choice of that given
task will determine their pay-off from the experiment. This procedure is more
compatible with the CI axiom as subjects treat each problem in isolation, whereas under
the ROCL, the probability of incentive is part of the evaluation process (Harrison et al.,

2015). If there are tasks, the probability that task is selected for actual payment is .𝑛 𝑖 1
𝑛

For simplicity, let’s assume there are only two tasks; and ; hence, the probability𝑡
1

𝑡
2

that each task being chosen is . Assume in each task, subjects are asked to choose0. 5
between two options and , where denotes the task number. This choice problem𝐴

𝑖
𝐵

𝑖
𝑖

can be represented by the decision tree below.

Under the ROCL axiom of EU, if a subject prefers to in a single choice problem, they𝐴
1

𝐵
1

will also choose to in the above problem under the random lottery incentive𝐴
1

𝐵
1

mechanism as

𝑢 𝐴
1( ) > 𝑢 𝐵

1( )⇔0. 5𝑢 𝐴
1( ) + 0. 5𝑢 𝐴

2
/𝐵

2( ) > 0. 5𝑢 𝐵
1( ) + 0. 5𝑢 𝐴

2
/𝐵

2( ).

Under the CI axiom, which is compatible by non-EU theories as well, subjects first
evaluate the last stage lotteries of a compound lottery. Hence, they first evaluate and𝐴

1
and replace them with their certainty equivalents that can be calculated according to𝐵

1
any decision theory. If they put more value on as compared to , then they will𝐴

1
𝐵

1
choose under the random lottery incentive mechanism as well.𝐴

1

Now, consider a case where and involve the valuation of lotteries. This choice𝑡
1

𝑡
2

problem can be represented by a decision tree below.



Under the CI axiom, to evaluate the above compound lottery, subjects first need to
evaluate and and replace them with their certainty equivalents. Hence, their𝑡

1
𝑡

2
evaluation is not influenced by the random lottery incentive mechanism.

Under the ROCL axiom of expected utility, subjects reduce the above compound lottery
as

0. 5 𝑝𝑢 𝑥
1( ) + 1 − 𝑝( )𝑢 𝑥

2( )[ ] + 0. 5 𝑞𝑢 𝑦
1( ) + 1 − 𝑞( )𝑢 𝑦

2( )[ ]
Given the existence of a utility function, subjects’ evaluation of lotteries in and in𝑡

1
𝑡

2
isolation is the same as their evaluation under the random lottery incentive mechanism.

Tables

Table A1: The B-D procedure on linked certainty equivalents of B-SB lottery pairs and AE(B)-SB lottery
pairs



Pairs Proportion indicating
higher CE for B as

compared to SB ( )π
1

Proportion indicating
higher CE for as𝐴𝐸(𝐵)

compared to ( ) 𝑆𝐵 π
2

|π
1

− π
2
|

1 0.19 0.12 0.07
2 0.53 0.27 0.26
3 0.95 0.96 0.01
4 0.85 0.74 0.11
5 0.93 0.95 0.01
6 0.93 0.88 0.05
7 0.30 0.19 0.11
8 0.75 0.64 0.11
9 0.95 0.95 0.00

Note: The test rejects the null hypothesis of if > d. Calculating the critical value dπ
1

= π
2

|π
1

− π
2
|

requires first defining ex-ante a familywise Type I error rate ( ). For theα
𝑓𝑤

α
𝑓𝑤

= 0. 05
corresponding critical value is 0.24.

Table A2: The B-D procedure on linked certainty equivalents of 18 pairs (Both A and B lotteries)

Pairs Proportion indicating
higher CE for compound
lottery as compared to

Simple ones ( )π
1

Proportion indicating higher
CE for the actuarily

equivalent lottery as
compared to Simple ones ( ) π

2

|π
1

− π
2
|

1 0.22 0.16 0.05
2 0.26 0.32 0.05
3 0.93 0.96 0.03
4 0.79 0.88 0.08
5 0.32 0.27 0.04
6 0.92 0.85 0.07
7 0.44 0.22 0.22
8 0.62 0.58 0.04
9 0.84 0.90 0.07

10 0.19 0.12 0.07
11 0.53 0.27 0.26
12 0.95 0.96 0.01
13 0.85 0.74 0.11
14 0.93 0.95 0.01
15 0.93 0.88 0.05
16 0.30 0.19 0.11
17 0.75 0.64 0.11
18 0.95 0.95 0.00

Note: The test rejects the null hypothesis of if > d. Calculating the critical value dπ
1

= π
2

|π
1

− π
2
|

requires first defining ex-ante a familywise Type I error rate ( ). For theα
𝑓𝑤

α
𝑓𝑤

= 0. 05
corresponding critical value is 0.30.


